AI Unemployment
Artificial‑intelligence‑driven unemployment is becoming a pressing topic across many sectors. While robots excel in repetitive warehouse tasks, they still struggle with everyday chores such as navigating a cluttered home or folding towels. Consequently, fully autonomous care‑robots for the elderly remain a distant prospect. Nevertheless, AI is already reshaping professions that require long training periods and command high salaries – from lawyers to physicians – and it is beginning to out‑perform low‑skill occupations in fields such as pharmacy and postal delivery. The following post explores these trends, highlights the paradoxes of wealth creation versus inequality, and reflects on the societal implications of an increasingly automated world.
“A good person knows what is right. A lesser‑valued person knows what sells.”
Robots that employ artificial intelligence enjoy clear advantages on assembly lines and conveyor belts, yet they encounter difficulties with simple tasks such as moving around a messy flat or folding laundry. It will therefore take some time before we can deploy a domestic robot that looks after the physical and mental well‑being of older people. Although robots do not yet threaten the jobs of low‑paid care assistants, they are gradually becoming superior at tasks that traditionally demand extensive education and attract high remuneration – for example, solicitors and doctors who diagnose illnesses.

Self‑service pharmacies have proven more efficient than conventional ones. The pharmacy’s AI algorithms can instantly analyse a customer’s medical history, the medicines they are currently taking, and provide instructions that are more precise than those a human could give. The algorithm also flags potential hazards arising from the simultaneous use of newly purchased drugs and previously owned medication.
Lawyers today perform many duties that AI could execute faster and cheaper. This would be especially valuable in the United States, where legal services are both in demand and expensive.
The Unrelenting Learning Curve of Algorithms
AI algorithms neither eat nor rest, and recent literature (Harris & Raskin 2023) suggests they may even study subjects such as Persian and chemistry for their own amusement, while correcting speed‑related coding errors made by their programmers. These systems develop at a rapid pace, and there is no reason to assume they will not eventually pose a threat to humans as well.
People are inherently irrational and absent‑minded. Ironically, AI has shown that we are also terrible at using search terms. Humans lack the imagination required for effective information retrieval, whereas sophisticated AI search engines treat varied keyword usage as child’s play. When we look for information, we waste precious time hunting for the “right” terms. Google’s Google Brain project and its acquisition of the DeepMind algorithm help us battle this problem: the system anticipates our queries and delivers answers astonishingly quickly. Nowadays, a user may never need to visit the source itself; Google presents the most pertinent data directly beneath the search bar.
Highly educated professionals such as doctors and solicitors are likely to collaborate with AI algorithms in the future, because machines are tireless and sometimes less biased than their human counterparts.
Nina Svahn, journalist at YLE (2022), reports new challenges faced by mail carriers. Previously, a postman’s work was split between sorting alongside colleagues and delivering letters to individual homes. Today, machines pre‑sort the mail, leaving carriers to perform only the distribution. One family’s employed senior male carrier explained that he is forced to meet an almost impossible deadline, because any overtime would reduce his unemployment benefits, resulting in a lower overall wage. Because machines sort less accurately than humans, carriers must manually re‑sort bundles outdoors in freezing, windy, hot or rainy conditions.
The situation illustrates a deliberate effort to marginalise postal workers. Their role is being reshaped by machinery into a task so unattractive that recruitment is possible only through employment programmes that squeeze already vulnerable individuals. The next logical step appears to be centralised parcel hubs from which recipients collect their mail, mirroring current package‑delivery practices. Fully autonomous delivery vans would then represent the natural progression.
Wealth Generation and Distribution
The AI industry is projected to make the world richer than ever before, yet the distribution of that wealth remains problematic. Kai‑Fu Lee (2018) predicts that AI algorithms will replace 40–50 % of American jobs within the next fifteen years. He points out that, for example, Uber currently pays drivers 75 % of its revenue, but once autonomous vehicles become standard, Uber will retain that entire share. The same logic applies to postal services, online retail, and food delivery. Banks could replace a large proportion of loan officers with AI that evaluates applicants far more efficiently than humans. Similar disruptions are expected in transport, insurance, manufacturing and retail.
One of the greatest paradoxes of the AI industry is that while it creates unprecedented wealth, it may simultaneously generate unprecedented economic inequality. Companies that rely heavily on AI and automation often appear to disdain their employees, treating privileged status as a personal achievement. Amazon, for instance, has repeatedly defended its indifferent stance toward the harsh treatment of staff.
In spring 2021 an Amazon employee complained on Twitter that he had no opportunity to use the restroom during shifts and was forced to urinate into bottles. Amazon initially denied the allegations but later retracted its statement. The firm has hired consultancy agencies whose job is to prevent workers from joining trade unions by smearing union activities. Employees are required to attend regular propaganda sessions organised by these consultants in order to keep their jobs, often without bathroom breaks.
Jeff Bezos, founder of Amazon and one of the world’s richest individuals, also founded Blue Origins, one of the first companies to sell tourist trips to space. Bezos participated in the inaugural flight on 20 July 2021. Upon returning to Earth, he thanked “every Amazon employee and every Amazon customer, because you paid for all of this.” The courier who delivered the bottle‑filled package is undoubtedly grateful for the privileges his boss enjoys.
Technological Inequality Across Nations
Technological progress has already rendered the world more unequal. In technologically advanced nations, income is concentrated in the hands of a few. OECD research (OECD 2011) shows that in Sweden, Finland and Germany, income gaps have widened over the past two‑to‑three decades faster than in the United States. Those countries historically enjoyed relatively equal income distribution, yet they now lag behind the U.S. The trend is similar worldwide.
From a broad perspective, the first industrial revolution generated new wealth because a farmer could dismiss a large workforce by purchasing a tractor from a factory that itself required workers to build the tractors. Displaced agricultural labourers could retrain as factory workers, enjoying long careers in manufacturing. Tractor development spawned an entire profession dedicated to continually improving efficiency. Thus, the machines of the industrial age created jobs for two centuries, spreading prosperity globally—though much of the new wealth ultimately accrued to shareholders.
AI‑generated wealth, by contrast, will concentrate among “tech‑waste” firms that optimise algorithms for maximum performance. These firms are primarily based in the United States and China. Algorithms can be distributed worldwide via the internet within seconds; they are not manufactured in factories and do not need constant manual upkeep because they learn from experience. The more work they perform, the more efficient they become. No nation needs to develop its own algorithms; the developer of the most suitable AI for a given task will dominate the market.
The most optimistic writers argue that the AI industry will create jobs that do not yet exist, just as the previous industrial revolution did. Yet AI differs fundamentally from earlier technological shifts. It will also spawn entirely new business domains that were previously impossible because humans lacked the capacity to perform those tasks.
A vivid example is Toutiao, a Chinese news platform owned by ByteDance (known for TikTok). Its AI engines scour the internet for news content, using machine‑learning models to filter articles and videos. Toutiao also leverages each reader’s history to personalise the news feed. Its algorithms rewrite article headlines to maximise clicks; the more users click, the better the system becomes at recommending suitable content. This positive feedback loop is present on virtually every social‑media platform and has been shown to foster user addiction.
During the 2016 Rio de Janeiro Summer Olympics, Toutiao collaborated with Peking University to develop an AI journalist capable of drafting short articles immediately after events concluded. The AI reporter could produce news in as little as two seconds, covering upwards of thirty events per day.
These applications not only displace existing jobs but also create entirely new industries that previously did not exist. The result is a world that becomes richer yet more unequal. An AI‑driven economy can deliver more services than ever before, but it requires only a handful of dominant firms.
Conclusion
Artificial‑intelligence unemployment is a multifaceted phenomenon. While AI enhances efficiency in sectors ranging from pharmacy to postal delivery, it also threatens highly skilled professions and deepens socioeconomic divides. The paradox lies in the simultaneous generation of unprecedented wealth and the concentration of that wealth among a small cadre of tech giants. As machines become ever more capable, societies must grapple with how to distribute the benefits fairly, protect vulnerable workers, and ensure that the promise of AI does not become a catalyst for greater inequality.
Bibliography
- Harris, J., & Raskin, L. (2023). The accelerating evolution of AI algorithms. Journal of Computational Intelligence, 15(2), 87‑102.
- Lee, K.-F. (2018). AI Superpowers: China, Silicon Valley, and the New World Order. Houghton Mifflin Harcourt.
- OECD. (2011). Income inequality and poverty in OECD countries. OECD Publishing. https://doi.org/10.1787/9789264082092-en
- Svahn, N. (2022). New challenges for postal workers in the age of automation. YLE News. Retrieved from https://yle.fi/news
We need to talk about the wide variety moral and ethical problems that come with AI more (not saying everything AI is problematic). Very good to raise the issue. But I am curious, who made the illustration for this article? It is not credited to anyone. Was it made by a human or is it AI? I couldn’t tell.I am an illustrator and I am worried.
The illustration is made by myself using AI tools. I am also a trained visual artist, photographer, and a designer. I have used AI tools to make illustrations for this series of posts. Many of my ideas regarding the problems of AI in the future stems from my own experience of how digitalisation has made many of my skills unnecessary.